Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 395
1.
Anal Chem ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38722256

Pressure and temperature, as common physical parameters, are important for monitoring human health. In contrast, single-mode monitoring is prone to causing experimental errors. Herein, we innovatively designed a dual-mode flexible sensing platform based on a platinum/zinc-meso-tetrakis(4-carboxyphenyl)porphyrin (Pt/Zn-TCPP) nanozyme for the quantitative monitoring of carcinoembryonic antigen (CEA) in biological fluids with pressure and temperature readouts. The Pt/Zn-TCPP nanozyme with catalytic and photothermal efficiencies was synthesized by means of integrating photosensitizers into porous materials. The flexible sensing system after the antigen-antibody reaction recognized the pressure using a flexible skin-like pressure sensor with a digital multimeter readout, whereas the temperature was acquired via the photoheat conversion system of the Pt/Zn-TCPP nanozyme under 808 nm near-infrared (NIR) irradiation using a portable NIR imaging camera on a smartphone. Meanwhile, the dual-mode flexible sensing system was carried out on a homemade three-dimensional (3D)-printed device. Results revealed that the developed dual-mode immunosensing platform could exhibit good pressure and temperature responses within the dynamic range of 0.5-100 ng mL-1 CEA with the detection limits of 0.24 and 0.13 ng mL-1, respectively. In addition, the pressure and temperature were sensed simultaneously without crosstalk interference. Importantly, the dual-mode flexible immunosensing system can effectively avoid false alarms during the measurement, thus providing great potential for simple and low-cost development for point-of-care testing.

2.
ACS Sens ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38693685

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.

4.
Eur J Clin Nutr ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632331

BACKGROUND: Prior observational studies have suggested correlations between saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) with cognitive function. However, causal relationships remains unclear. METHODS: We assessed the causal impact of two SFAs (palmitic acid [PA] and stearic acid [SA]) and two MUFAs (oleic acid [OA] and palmitoleic acid [POA]) on cognitive function-related traits, and dementia-related traits by univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) analyses. RESULTS: UVMR indicated ß of 0.060 (P = 4.05E-06) for cognitive performance score and 0.066 (P = 4.21E-04) for fluid intelligence per standard deviation (SD) increase in OA level. MVMR indicated: (i) ß of -0.608 (P = 8.37E-05) for fluid intelligence score per SD increase in POA; (ii) ß of 0.074 (P = 0.018) for fluid intelligence score per SD increase in OA; (iii) ß of 0.029 (P = 0.033) for number of incorrect matches in round per SD increase in PA; and (iv) ß of 0.039 (P = 0.032) for number of incorrect matches in round per SD increase in SA. In addition, a secondary MVMR analysis after excluding the effect of polyunsaturated fatty acids suggested that: (i) ß of -0.043 (P = 1.97E-02) for cognitive performance score per SD increase in PA and (ii) ß of -0.079 (P = 1.79E-03) for cognitive performance score per SD increase in SA. CONCLUSIONS: Overall, UVMR and MVMR suggest that OA may be beneficial for cognitive function, while POA, PA, and SA may have detrimental effects on cognitive function.

5.
Chembiochem ; : e202400105, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639074

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.

6.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Article En | MEDLINE | ID: mdl-38685219

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Cytochrome P-450 Enzyme System , Hemiptera , Insect Proteins , Insecticide Resistance , Insecticides , Ivermectin/analogs & derivatives , Pyrazoles , Pyridazines , ortho-Aminobenzoates , Animals , Hemiptera/drug effects , Hemiptera/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Pyridazines/pharmacology , Insecticide Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Pyrazoles/pharmacology , Phylogeny , Neonicotinoids/pharmacology , Gene Knockdown Techniques , Molecular Docking Simulation , Amino Acid Sequence , Ivermectin/pharmacology , Ivermectin/toxicity
7.
Sci Rep ; 14(1): 8160, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589521

To analyze the changing trend of CH and CRF values under different influencing factors in T2DM patients. A total of 650 patients with T2DM were included. We discovered that the course of T2DM, smoking history, BMI, and FBG, DR, HbA1c, TC, TG, and LDL-C levels were common risk factors for T2DM, while HDL-C levels were a protective factor. Analyzing the CH and CRF values according to the course of diabetes, we discovered that as T2DM continued to persist, the values of CH and CRF gradually decreased. Moreover, with the increase in FBG levels and the accumulation of HbA1c, the values of CH and CRF gradually decreased. In addition, in patients with HbA1c (%) > 12, the values of CH and CRF decreased the most, falling by 1.85 ± 0.33 mmHg and 1.28 ± 0.69 mmHg, respectively. Compared with the non-DR group, the CH and CRF values gradually decreased in the mild-NPDR, moderate-NPDR, severe-NPDR and PDR groups, with the lowest CH and CRF values in the PDR group. In patients with T2DM, early measurement of corneal biomechanical properties to evaluate the change trend of CH and CRF values in different situations will help to identify and prevent diabetic keratopathy in a timely manner.


Cornea , Diabetes Mellitus, Type 2 , Humans , Glycated Hemoglobin , Biomechanical Phenomena , Intraocular Pressure , Elasticity , Tonometry, Ocular
8.
Aging (Albany NY) ; 16(5): 4348-4362, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38431308

Diesel exhaust particles (DEPs) are major air pollutants emitted from automobile engines. Prenatal exposure to DEPs has been linked to neurodevelopmental and neurodegenerative diseases associated with aging. However, the specific mechanism by DEPs impair the hippocampal synaptic plasticity in the offspring remains unclear. Pregnant C57BL/6 mice were administered DEPs solution via the tail vein every other day for a total of 10 injections, then the male offsprings were studied to assess learning and memory by the Morris water maze. Additionally, protein expression in the hippocampus, including CPEB3, NMDAR (NR1, NR2A, NR2B), PKA, SYP, PSD95, and p-CREB was analyzed using Western blotting and immunohistochemistry. The alterations in the histomorphology of the hippocampus were observed in male offspring on postnatal day 7 following prenatal exposure to DEPs. Furthermore, 8-week-old male offspring exposed to DEPs during prenatal development exhibited impairments in the Morris water maze test, indicating deficits in learning and memory. Mechanistically, the findings from our study indicate that exposure to DEPs during pregnancy may alter the expression of CPEB3, SYP, PSD95, NMDAR (NR1, NR2A, and NR2B), PKA, and p-CREB in the hippocampus of both immature and mature male offspring. The results offer evidence for the role of the NMDAR/PKA/CREB and CPEB3 signaling pathway in mediating the learning and memory toxicity of DEPs in male offspring mice. The alterations in signaling pathways may contribute to the observed damage to synaptic structure and transmission function plasticity caused by DEPs. The findings hold potential for informing future safety assessments of DEPs.


Prenatal Exposure Delayed Effects , Vehicle Emissions , Female , Pregnancy , Humans , Mice , Animals , Male , Vehicle Emissions/toxicity , Maze Learning , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/metabolism , Neuronal Plasticity , RNA-Binding Proteins/metabolism
9.
BMC Complement Med Ther ; 24(1): 114, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454410

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and the third leading cause of death worldwide. Previous evidence has shown that acupuncture may be an effective complementary alternative therapy for stable COPD. However, large-sample, rigorously designed long-term follow-up studies still need to be completed. Notably, the relationship between the frequency of acupuncture and clinical efficacy in studies on acupuncture for stable COPD still needs further validation. This study aims to evaluate the efficacy and safety of acupuncture for stable COPD and further investigate the dose-effect relationship of acupuncture. METHODS/DESIGN: This is a multicenter, randomized, controlled trial that uses central randomization to randomly allocate 550 participants in a 1:1:1:1:1 ratio to once a week acupuncture group, twice a week acupuncture group, three times a week acupuncture group, sham acupuncture group and waiting-list control group. The sham acupuncture group will receive placebo acupuncture treatments three times per week, and the waiting-list control group will not receive any form of acupuncture intervention. The study consists of a 2-week baseline, 12-week of treatment, and 52-week of follow-up. Patients with COPD between 40 to 80 years old who have received stable Western medication within the previous 3 months and have had at least 1 moderate or severe acute exacerbation within the past 1 year will be included in the study. Basic treatment will remain the same for all participants. The primary outcome is the proportion of responders at week 12. Secondary outcomes include the proportion of responders at week 64, change in the St. George's Respiratory Questionnaire (SGRQ) Scale, change in the Modified-Medical Research Council (mMRC) Scale, change in the COPD Assessment Test (CAT) Scale, change in the Lung Function Screening Indicators (LFSI), change in the 6-min walk distance (6-MWD), change in Short-Form 36 Health Survey (SF-36) Scale, the number of moderate and severe acute exacerbations and adverse event rate during the follow-up period. DISCUSSION: This study will provide robust evidence on whether acupuncture is safe and effective for treating stable COPD. Meanwhile, comparing the differences in efficacy between different acupuncture frequencies will further promote the optimization of acupuncture for stable COPD. TRIAL REGISTRATION: This study was registered in the Chinese Clinical Trial Registry (ChiCTR2200058757), on April 16, 2022.


Acupuncture Therapy , Pulmonary Disease, Chronic Obstructive , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Multicenter Studies as Topic , Pulmonary Disease, Chronic Obstructive/drug therapy , Randomized Controlled Trials as Topic
10.
Int J Biol Macromol ; 265(Pt 2): 131056, 2024 Apr.
Article En | MEDLINE | ID: mdl-38522686

Bemisia tabaci is a formidable insect pest worldwide, and exhibits significant resistance to various insecticides. Flupyradifurone is one novel butenolide insecticide and has emerged as a new weapon against B. tabaci, but field-evolved resistance to this insecticide has become a widespread concern. To unravel the mechanisms of field-evolved flupyradifurone resistance, we conducted a comprehensive investigation into susceptibility of twenty-one field populations within the Beijing-Tianjin-Hebei Region of China. Alarmingly, thirteen of these populations displayed varying degrees of resistance, ranging from low to medium levels, and building upon our prior findings, we meticulously cloned and characterized the CYP6CX4 gene in B. tabaci. Our investigations unequivocally confirmed the association between CYP6CX4 overexpression and flupyradifurone resistance in three of the thirteen resistant strains via RNA interference. To further validate our findings, we introduced CYP6CX4 overexpression into a transgenic Drosophila melanogaster line, resulting in a significant development of resistance to flupyradifurone in D. melanogaster. Additionally, homology modeling and molecular docking analyses showed the stable binding of flupyradifurone to CYP6CX4, with binding free energy of -6.72 kcal mol-1. Collectively, our findings indicate that the induction of CYP6CX4 exerts one important role in detoxification of flupyradifurone, thereby promoting development of resistance in B. tabaci.


4-Butyrolactone/analogs & derivatives , Hemiptera , Insecticides , Pyridines , Animals , Insecticides/pharmacology , Insecticides/chemistry , Drosophila melanogaster , Molecular Docking Simulation , Hemiptera/genetics , China , Neonicotinoids
11.
Anal Chem ; 96(12): 5014-5021, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38484042

Different from prevalent approaches such as immunological recognition, complementary base pairing, or enzymatic regulation in current photoelectrochemical (PEC) sensing, this study reported an excited-state intramolecular proton transfer (ESIPT)-driven photon-gating PEC sensor. The sensor is developed for the detection of CO-releasing molecule-3 (CORM-3) by modifying an ESIPT-switched organic fluorescent probe molecule (NDAA) onto the surface of a p-type semiconductor (BiOI). The NDAA can be excited and exhibit strong green fluorescence after responding with CORM-3, resulting in an electrode-interface photon competitive absorption effect due to the switch on ESIPT and considerably reducing the photocurrent signal. The experimental results revealed that the as-developed PEC sensor achieved good analytical performance with high selectivity and sensitivity, with a linear range of 0.01-1000 µM and a lower detection limit of 6.5 nM. This work demonstrates the great potential of the organic fluorescent probe molecule family in advancing PEC analysis. It is anticipated that our findings will stimulate the creation of diverse functional probes possessing distinctive characteristics for inventive PEC sensors.


Nitrosamines , Organometallic Compounds , Protons , Fluorescent Dyes/chemistry
12.
World J Psychiatry ; 14(1): 76-87, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38327892

BACKGROUND: Occult breast cancer (OBC) has traditionally been considered to be a carcinoma of unknown primary origin with a favorable prognosis and can be treated as stage II-III breast cancer. Due to the small number of cases and limited clinical ex-perience, treatments vary greatly around the world and no standardized treat-ment has yet been established. AIM: To investigate the clinicopathological features, psychological status and prog-nostic features of patients with OBC. METHODS: The clinicopathological data of 33 OBC patients diagnosed and treated in the Affiliated Hospital of Xuzhou Medical University and Xuzhou Central Hospital from November 2015 to November 2022 were retrospectively analyzed. The psychological status of OBC patients was evaluated by the Self-rating Anxiety Scale and Self-rating Depression Scale. Patients' emotions, stress perception and psychological resilience were evaluated by the Positive and Negative Affect Schedule, the Chinese Perceived Stress Scale, and the Connor-Davidson Resilience Scale (CD-RISC), respectively. Patient survival was calculated using the Kaplan-Meier method, and survival curves were plotted for analysis with the log-rank test. Univariate and multivariate survival analyses were performed using the Cox regression model. RESULTS: The 33 OBC patients included 32 females and 1 male. Of the 33 patients, 30 (91%) had axillary tumors, 3 (9%) had a neck mass as the primary symptom; 18 (54.5%) had estrogen receptor-positive tumors, 17 (51.5%) had progesterone receptor-positive tumors, and 18 (54.5%) had Her-2-positive tumors; 24 (72.7%) received surgical treatment, including 18 patients who underwent modified radical mastectomy, 1 patient who underwent breast-conserving surgery plus axillary lymph node dissection (ALND), and 5 patients who underwent ALND alone; 12 patients received preoperative neoadjuvant therapy. All 30 patients developed anxiety and depression, with low positive affect scores and high negative affect scores, accompanied by a high stress level and poor psychological resilience. There were no differences in the psychological status of patients according to age, body mass index, or menopausal status. The overall survival and disease-free survival (DFS) of all the patients were 83.3% and 55.7%, respectively. Univariate analysis demonstrated that the initial tumor site (P = 0.021) and node stage (P = 0.020) were factors that may affect patient prognosis. The 5-year DFS rate of OBC patients who received radiotherapy was greater (P < 0.001), while the use of different surgical methods (P = 0.687) had no statistically significant effect on patient outcomes. Multivariate analysis revealed that radiotherapy (P = 0.031) was an independent prognostic factor. Receiving radiotherapy had a significant effect on the CD-RISC score (P = 0.02). CONCLUSION: OBC is a rare breast disease whose diagnosis and treatment are currently controversial. There was no significant difference in the efficacy of other less invasive surgical procedures compared to those of modified radical mastectomy. In addition, radiotherapy can significantly improve patient outcomes. We should pay attention to the psychological state of patients while they receive antitumor therapy.

13.
Int Immunopharmacol ; 129: 111559, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38330794

Antibiotic-resistant Serratia marcescens (Sm) is known to cause bloodstream infections, pneumonia, etc. The nod-like receptor family, pyrin domain-containing 3 (NLRP3), has been implicated in various lung infections. Yet, its role in Sm-induced pneumonia was not well understood. In our study, we discovered that deletion of Nlrp3 in mice significantly improved Sm-induced survival rates, reduced bacterial loads in the lungs, bronchoalveolar lavage fluid (BALF), and bloodstream, and mitigated the severity of acute lung injury (ALI) compared to wild-type (WT) mice. Mechanistically, we observed that 24 h post-Sm infection, NLRP3 inflammasome activation occurred, leading to gasdermin D NH2-terminal (GSDMD-NT)-induced pyroptosis in macrophages and IL-1ß secretion. The NLRP3 or NLRP3 inflammasome influenced the expression PD-L1 and PD-1, as well as the count of PD-L1 or PD-1-expressing macrophages, alveolar macrophages, interstitial macrophages, PD-L1-expressing neutrophils, and the count of macrophage receptors with collagenous structure (MARCO)-expressing macrophages, particularly MARCO+ alveolar macrophages. The frequency of MARCO+ alveolar macrophages, PD-1 expression, particularly PD-1+ interstitial macrophages were negatively or positively correlated with the Sm load, respectively. Additionally, IL-1ß levels in BALF correlated with three features of acute lung injury: histologic score, protein concentration and neutrophil count in BALF. Consequently, our findings suggest that Nlrp3 deletion offers protection agaisnt acute Sm pneumonia in mice by inhibiting inflammasome activation and reducing Sm infection-induced PD-L1/PD-1 or MARCO expression, particularly in macrophages. This highlights potential therapeutic targets for Sm and other gram-negative bacteria-induced acute pneumonia.


Acute Lung Injury , Pneumonia , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Programmed Cell Death 1 Receptor/metabolism , Serratia marcescens/genetics , Serratia marcescens/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Pneumonia/metabolism , Macrophages/metabolism , Acute Lung Injury/chemically induced , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Mice, Knockout
14.
Mol Biol Rep ; 51(1): 338, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38393490

Pulmonary fibrosis (PF) is a progressive and fatal lung disease with high incidence and a lack of effective treatment, which is a severe public health problem. PF has caused a huge socio-economic burden, and its pathogenesis has become a research hotspot. SIRT1 is a nicotinamide adenosine dinucleotide (NAD)-dependent sirtuin essential in tumours, Epithelial mesenchymal transition (EMT), and anti-aging. Numerous studies have demonstrated after extensive research that it is crucial in preventing the progression of pulmonary fibrosis. This article reviews the biological roles and mechanisms of SIRT1 in regulating the progression of pulmonary fibrosis in terms of EMT, oxidative stress, inflammation, aging, autophagy, and discusses the potential of SIRT1 as a therapeutic target for pulmonary fibrosis, and provides a new perspective on therapeutic drugs and prognosis prospects.


Neoplasms , Pulmonary Fibrosis , Sirtuin 1 , Humans , Epithelial-Mesenchymal Transition , Fibrosis , Oxidative Stress , Sirtuin 1/genetics , Sirtuin 1/metabolism
15.
Heliyon ; 10(1): e23412, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38163134

Background: Previous observational studies suggested a correlation between particulate matter 2.5 (PM2.5) and infectious diseases, but causality remained uncertain. This study utilized Mendelian randomization (MR) analysis to investigate causal relationships between PM2.5 concentrations and various infectious diseases (COVID-19 infection, hospitalized COVID-19, very severe COVID-19, urinary tract infection, bacterial pneumonia, and intestinal infection). Methods: Inverse variance weighted (IVW) was the primary method for evaluating causal associations. For significant causal estimates, multiple sensitivity tests were further performed: (i) three additional MR methods (MR-Egger, weighted median, and maximum likelihood method) for supplementing IVW; (ii) Cochrane's Q test for assessing heterogeneity; (iii) MR-Egger intercept test and MR-PRESSO global test for evaluating horizontal pleiotropy; (iv) leave-one-out sensitivity test for determining the stability. Results: PM2.5 concentration significantly increased the risk of hospitalized COVID-19 (OR = 1.91, 95 % CI: 1.06-3.45, P = 0.032) and very severe COVID-19 (OR = 3.29, 95 % CI: 1.48-7.35, P = 3.62E-03). However, no causal effect was identified for PM2.5 concentration on other infectious diseases (P > 0.05). Furthermore, various sensitivity tests demonstrated the reliability of significant causal relationships. Conclusions: Overall, lifetime elevated PM2.5 concentration increases the risk of hospitalized COVID-19 and very severe COVID-19. Therefore, controlling air pollution may help mitigate COVID-19 progression.

16.
J Alzheimers Dis ; 97(1): 229-237, 2024.
Article En | MEDLINE | ID: mdl-38189756

BACKGROUND: Previous observational studies suggested an association between sepsis and neurodegenerative diseases, but causality remains unclear. OBJECTIVE: Determining the causal association between sepsis and four neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Lewy body dementia) through bidirectional two-sample Mendelian randomization (MR) analysis. METHODS: Genome-wide association study summary statistics for all traits were obtained from publicly available databases. Inverse variance weighted (IVW) was the primary method for evaluating causal associations. In addition, three additional MR methods (MR-Egger, weighted median, and maximum likelihood method) were employed to supplement IVW. Furthermore, various sensitivity tests were conducted to assess the reliability: 1) Cochrane's Q test for assessing heterogeneity; 2) MR-Egger intercept test and MR-PRESSO global test for evaluating horizontal pleiotropy; 3) leave-one-out sensitivity test for determining the stability. RESULTS: The results of IVW indicated that sepsis significantly increased the risk of Alzheimer's disease (OR = 1.11, 95% CI: 1.01-1.21, p = 0.025). In addition, three additional MR methods suggested parallel results. However, no causal effect of sepsis on the three other neurodegenerative diseases was identified. Subsequently, reverse MR analysis indicated that the four neurodegenerative diseases do not causally affect sepsis. Furthermore, sensitivity tests demonstrated the reliability of the MR analyses, suggesting no heterogeneity or horizontal pleiotropy. CONCLUSIONS: The present study contributes to a deeper comprehension of the intricate interplay between sepsis and neurodegenerative disorders, thereby offering potential avenues for the development of therapeutic agents that can effectively mitigate the multifarious complications associated with sepsis.


Alzheimer Disease , Neurodegenerative Diseases , Sepsis , Humans , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/genetics , Alzheimer Disease/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Reproducibility of Results , Sepsis/complications , Sepsis/genetics
17.
Ecotoxicol Environ Saf ; 270: 115948, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38184976

The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.


Drosophila , Testis , Male , Animals , Testis/metabolism , Drosophila/metabolism , Antimony/toxicity , Antimony/metabolism , Cell Communication , ErbB Receptors/metabolism , Sequence Analysis, RNA
18.
Z Rheumatol ; 83(Suppl 1): 132-139, 2024 Feb.
Article En | MEDLINE | ID: mdl-36732450

BACKGROUND: The inflammatory factor interferon (IFN)-γ is related to the occurrence and development of systemic lupus erythematosus (SLE). The vitamin D receptor (VDR) has an anti-inflammatory effect and its downregulation is involved in the onset of SLE. Our previous studies have confirmed that the expression of VDR in SLE peripheral blood mononuclear cells (PBMCs) is downregulated, which is negatively correlated with disease activity and inflammation. However, the mechanism underlying VDR downregulation in SLE is unknown. METHODS: Based on the results of computer simulation analysis, the expression of VDR and four microRNAs (miR-17-3p, miR-34a, miR-346, and miR-125b) in SLE PBMC cells was analyzed under proinflammatory cytokine IFN­Î³ treatment, and miR-125b was identified as the target miRNA. The relationship between IFN­Î³, miR-125b, and VDR was further assessed in THP­1 cells. RESULTS: We showed that IFN­Î³ inhibited the expression of VDR and miR-125b. Further study revealed that VDR mRNA was positively correlated with miR-125b in THP­1 cells after IFN­Î³ intervention. After transfection of miR-125b mimic or inhibitor, the expression of VDR in the miR-125b inhibitor group was lower than in the control group and miR-125b mimic group, while expression in the control group was lower than in miR-125b mimic group. Transfection of miR-125b inhibitor into THP­1 cells could further promote the ability of IFN­Î³ to inhibit VDR. CONCLUSION: The decrease in VDR expression promotes development of inflammation and SLE. These data suggest that miR-125b may mediate inflammatory factor IFN-γ-induced downregulation of VDR in the pathogenesis of SLE.


Lupus Erythematosus, Systemic , MicroRNAs , Humans , MicroRNAs/genetics , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/metabolism , Down-Regulation , Computer Simulation , Lupus Erythematosus, Systemic/genetics , Inflammation
19.
Small ; 20(16): e2309264, 2024 Apr.
Article En | MEDLINE | ID: mdl-38010948

In this work, sub-nanometer Co clusters anchored on porous nitrogen-doped carbon (C─N─Co NCs) are successfully prepared by high-temperature annealing and pre-fabricated template strategies for non-invasive sensing of clozapine (CLZ) as an efficient substrate adsorption and electrocatalyst. The introduction of Co sub-nanoclusters (Co NCs) provides enhanced electrochemical performance and better substrate adsorption potential compared to porous and nitrogen-doped carbon structures. Combined with ab initio calculations, it is found that the favorable CLZ catalytic performance with C─N─Co NCs is mainly attributed to possessing a more stable CLZ adsorption structure and lower conversion barriers of CLZ to oxidized state CLZ. An electrochemical sensor for CLZ detection is conceptualized with a wide operating range and high sensitivity, with monitoring capabilities validated in a variety of body fluid environments. Based on the developed CLZ sensing system, the CLZ correlation between blood and saliva and the accuracy of the sensor are investigated by the gold standard method and the rat model of drug administration, paving the way for non-invasive drug monitoring. This work provides new insights into the development of efficient electrocatalysts to enable drug therapy and administration monitoring in personalized healthcare systems.


Antipsychotic Agents , Clozapine , Rats , Animals , Antipsychotic Agents/therapeutic use , Carbon/chemistry , Drug Monitoring , Nitrogen , Clozapine/chemistry , Clozapine/therapeutic use
20.
Clin Case Rep ; 11(12): e8216, 2023 Dec.
Article En | MEDLINE | ID: mdl-38076017

Our purpose is to clearly diagnose the tongue and back tuberculosis ulcer through detailed medical history collection combined with examination, so as to provide certain experience for the diagnosis and treatment of oral tuberculosis.

...